

BSc (Hons) in Computer Engineering Laboratory Practical

Experiment #2 Hand on Experience on Basic Circuits

Name:		
Index No		
Intake		
Date		
Instructor Na	me and Signature:	•••••
	••••••	
Comments		Grade
	L	

Objectives:

To make an electronic circuit on a breadboard, then implement it as a complete product using a dot board

Outcomes:

After completing this experiment, students would be able to:

- a) Explain steps for circuit designing.
- b) Read the exiting circuit diagram and implement it.
- c) Understand different soldering tools and how it used in a proper way.
- d) Read the datasheet and modify the existing circuit as required.

Equipment Required:

A breadboard, A power supply, A signal generator, An oscilloscope, A multimeter.

Ex 01: Create a power indicator light

Use a LED and create a simple power indicator. Your power source is 5V DC; however, LED works on 2V (2.2v) DC voltage and takes 10mA current. Therefore, you must use a resistor. (**DO NOT USE** LED without resister)

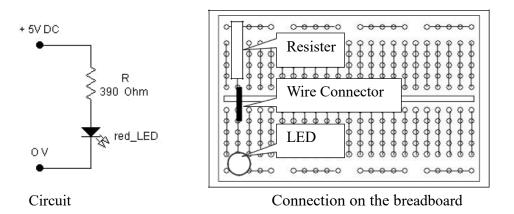


Figure 01: Simple Circuit

Create a Simple Multivibrator Circuit and explain How its work

Note:

Multivibrator is the most commonly used type of relaxation oscillator because not only are they simple, reliable, and easy to construct, they also produce a constant square wave output waveform.

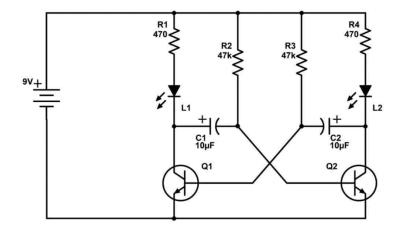
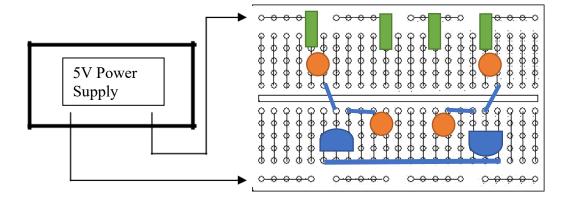



Figure 02: Multivibrator Circuit

Ex 02: Implement an electronic circuit using a breadboard

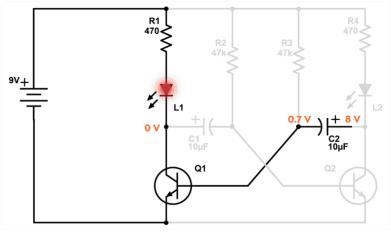
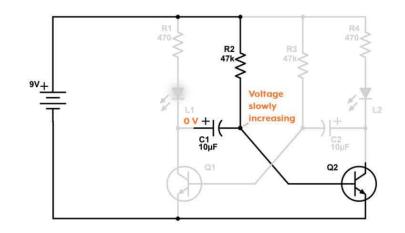

Implement the above Multivibrator circuit using a breadboard.

Figure 03: Multivibrator Circuit implementation on a breadboard


Ex 03: Explain the behavior of the multivibrator

1. Explain task of the R1 and R4 Resister (Assume that LED take 10mA maximum current)

2. Use the following sample states and explain how the system works. Note that, six components make up the oscillator: Q1, Q2, C1, C2, R2, and R3.

••	••	•••	••	•••	•••	••	•••	•••	•••	•••	•••			••	•••	•••	••	•••	•••	•••	••	•••	•••	••	•••		••	•••	••	•••	•••	•••	•••	•••	•••	••	•••		•••	•••	•••	••	•••	•••	•••	•••		•••	••	•••	•••	••	•••	•••
••	••	•••	••	••	•••	••	•••	•••	•••	•••	••	•••	••	•••	•••	•••	••	•••	•••	•••	••	•••	•••	••	•••	••	••	••	••	•••	•••	•••	••	••	•••	••	••	•••	••	••	•••	••	•••	••	•••	••	•••	•••	••	••	•••	•••	••	•••

Note: Frequency of Oscillation

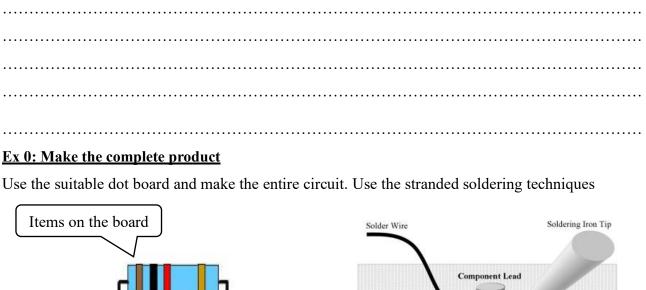
 $f = \frac{1}{\mathrm{T}} = \frac{1}{1.38\mathrm{RC}}$

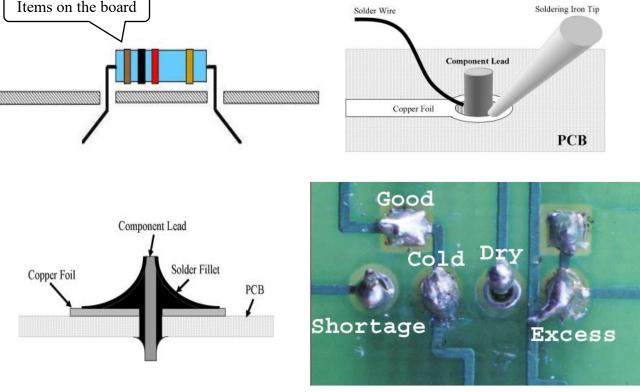
Example:

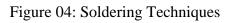
Multivibrator circuit is constructed using two timing capacitors of equal value of 3.3 uF and two base resistors of value $10 \text{k}\Omega$. Calculate the minimum and maximum frequencies of oscillation if a $100 \text{k}\Omega$ dual-gang potentiometer is connected in series with the two resistors.

With the potentiometer at 0%, the value of the base resistance is equal to $10k\Omega$.

$$f = \frac{1}{1.38 \times 3.3 \mathrm{uF} \times 10 \mathrm{k}\Omega} = 22 \mathrm{Hz}$$


with the potentiometer at 100%, the value of the base resistance is equal to $10k\Omega + 100k\Omega = 110k\Omega$.


$$f = \frac{1}{1.38 \times 3.3 \mathrm{uF} \times 110 \mathrm{k}\Omega} = 2.0 \mathrm{Hz}$$


Then the output frequency of oscillation for the multivibrator can be varied from between 2.0 and 22 Hertz.

Ex 04: Identify Suitable RC values

Calculate suitable RC values to create 1Hz 10 Hz and 100 Hz oscillation (Use existing R or C value first and calculate appropriate other value)

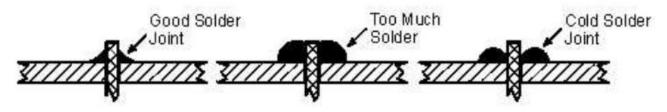


Figure 05: Soldering Techniques

With this experience explain a way to transfer each component into a dot board.

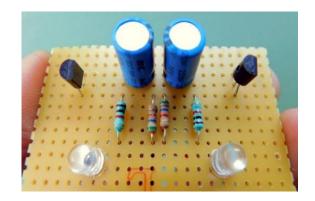


Figure 06: End Product

<u>END</u>