

BSc (Hons) in Computer Engineering Laboratory Practical ET1102- Basic Electronics

Experiment #1 Design of a Simple Zener Regulated DC Power Supply

Name:						
Index No						
Intake						
Date						
Instructor Name and Signature:						
Comments		Grade				

Objectives:

- (a) Testing of Diodes
- (b) Full Wave Rectifier
- (c) Capacitor Filter
- (d) Zener Regulator
- (e) Hard-wired simple zener regulated 5 V dc power supply

Equipment required:

5V/50Hz ac source Oscilloscope Multimeter Protoboard

Components required :

Diode IN4001 Zener Diode (Vz=4.7V) Bridge Rectifier,IC Capacitors 4.7µf,220µf(1 of each) Resistors 1K,10K,100K (1 of each)

(a) Testing of Diodes

The resistance of a forward biased diode, \mathbf{R}_{f} , is low and the resistance of a reversed biased diode \mathbf{R}_{r} is high.By observing the resistance of the diode, \mathbf{R}_{f} and \mathbf{R}_{r} it is possible to test a diode and determine whether it is working or not.

Use the multimeter as an ohmmeter as shown in Fig:1.1 and observe $\mathbf{R}_{\mathbf{f}}$ and $\mathbf{R}_{\mathbf{r}}$ by fixing a diode on the protoboard.

Is the diode working or not working?.....

(b) Bridge Rectifier

The Bridge rectifier in fig: 1.2 is a full wave rectifier. It converts ac to dc. The ac input is applied across A and B while the dc output is taken across P and Q.

The bridge rectifier is available in IC form as shown in Fig : 1.3

- Fix the IC on the protoboard and apply a 5V/50Hz voltage across the input terminals ABof the IC.
- Connect a 10K load resistor across the output terminals PQ.
- Observe the ac input voltage across AB on the oscilloscope and draw the waveform in the box given below.
- Observe the dc output voltage across PQ on the oscilloscope and draw the waveform in the box given below.

Use the multimeter and measure the dc voltage of the output.

 $V_{out} = V_{dc} = \dots$

Measure V_{max} of the waveform on the oscilloscope and estimate V_{dc} using the expression

 $V_{dc} = (2/\pi) \cdot V_{max} = \dots$

(c) Capacitor Filter

The output from the rectifier is a changing dc voltage; it is not a true dc. It is a almost always necessary to have steady dc voltages to get electronic circuits to function properly. A number of different smoothing circuits or filter circuits are used to produce a steady dc from a rectifier output. The simplest such filter circuit is the capacitor filter.

• Connect the 4.7µf capacitor across the output of the rectifier as shown in Fig : 1.4

- Observe the output voltage across the load resistor on the oscilloscope and draw the waveform in the box given below.
- Replace the 4.7µf capacitor with the 220µf capacitor and observe the output voltage waveform on the oscilloscope and draw the waveform on the same box given below as before.

• Make a comment on your observations of the effect of the capacitor filter.

.....

(d) Zener Regulator

The dc output voltage after the capacitor filter is smooth. However it would vary if the load resistor varies. Hence the dc output voltage has to be stabilized. A simple zener regulator can produce a reasonably good stable dc output.

Connect the zener diode and a series resistor as shown in the circuit in Fig: 1.5 such that the output dc voltage is made stable or regulated.

• Observe the dc output across the load resistor on the oscilloscope.

 V_{ou} =..... from the oscilloscope

 V_{out} =..... from the multimeter

- Change the load resistor R_L to 100K and obtain V_{out} .

V_{out}=..... from the multimeter

• Change the load resistor R_L to 1K and obtain V_{out} .

V_{out}=..... from the multimeter

• Make a comment on the dc output voltage as R_L is changed.

Performance Evaluation

Experiment: Design of a Simple Zener Regulated DC Power Supply

	Evaluation Aspect	Marks
1	Preparation	
2	Neatness of Work	
3	Familiarity with Lab Equipment	
4	Completion of Work	
5	Capability	
6	Accuracy of Readings/ Observations	
7	Answers given to Questions	
8	Discipline	
	Total	

Marks are awarded on a 0-10 scale for each aspect

Excellent	Very Good	Good	Fair	Poor	Very Poor
10	9-8	7 – 6	5-4	3-2	1 – 0

Name of the Instructor:	
Signature:	
Date:	