

General Sir John Kotelawala Defense University Faculty of Computing

BSc (Hons) in Computer Engineering Laboratory Practical ET1102- Basic Electronics

Experiment \#3 Combinational and Sequential Logic Circuit

Name:	
Index No	
Intake	
Date	
Instructor Name and Signature:	
Comments	Grade

Objectives:

After successfully completing this experiment you would be able to;
(a) Get familiar with Logic Gates and Flip Flops in commercially available ICs.
(b) Identify the pin connections of ICs using data sheets.
(c) Build simple combinational and sequential circuits.
(d) Use logic probe to check the logic level in digital circuits.
(e) Use logic Pulser to apply clock pulses.

Equipment required:
Components required:
+5 V Dc power supply
IC 7400
Waveform Generator
IC 7486
Logic Probe
IC 7473 (2 nos)
Protoboard
LEDs (6 nos)
Logic Pulser
1.2K resistor

Procedure :

a) Full Adder

Full Adder has 3 inputs and 2 outputs. A_{i} and B_{i} are the two binary bits to be added and $\mathrm{C}_{\mathrm{i}-1}$ is the Carry coming from the $\mathrm{i}-1^{\text {th }}$ bit. Two outputs are Sum and Carry for the $\mathrm{i}^{\text {th }}$ bit.

$>$ Draw the Truth Table for the full adder and obtain expressions for S_{i} and C_{i}.

$\mathbf{A}_{\mathbf{i}}$	$\mathbf{B}_{\mathbf{i}}$	$\mathbf{C}_{\mathbf{i} \mathbf{-} \mathbf{1}}$	$\mathbf{S}_{\mathbf{i}}$	$\mathbf{C}_{\mathbf{i}}$

$\mathbf{S i}_{\mathbf{i}}=$
$\mathbf{C l}_{\mathbf{i}}=$
$>$ Build a full adder using XOR gates and NAND gates. You may use the data sheets provided to find the pin connections of the ICs.
$>$ Verify the Truth Table for the full adder by giving inputs and measuring the output with the logic probe.
b) Sequential Circuits with a moving band of lights.
> Connect the following circuit using JK Flip Flops. You may use the data sheets provided to find the pin connections of the ICs.

$>$ Connect the 6 LEDs to $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}, \overline{\mathrm{Q}}_{3}$ pins respectively. The negative pins of LEDs should be connected together and then connected to ground through the 1.2 K resistor.
$>$ Connect the clear pins of the flip-flops to ground momentarily and then keep it permanently connected to +5 V .
$>$ Apply clock pulses to the clock input of flip-flops using the Logic Pulsar (set the pulsar frequency to 0.5 Hz) and find the sequence of the ON LEDs.

Clock Pulse	LEDs						
	1	2	3	4	5	6	

$>$ Apply a pulse train of +5 V amplitude and 10 Hz frequency to the clock input of flip flops and observe the effect of moving band of lights.

Performance Evaluation

Experiment: Combinational and Sequential Logic Circuit

	Evaluation Aspect	Marks
1	Preparation	
2	Neatness of Work	
3	Familiarity with Lab Equipment	
4	Completion of Work	
5	Capability	
6	Accuracy of Readings/ Observations	
7	Answers given to Questions	
8	Discipline	
	Total	

Marks are awarded on a 0-10 scale for each aspect

Excellent	Very Good	Good	Fair	Poor	Very Poor
10	$9-8$	$7-6$	$5-4$	$3-2$	$1-0$

Name of the Instructor:

Signature:
Date:

