

BSc (Hons) in Computer Engineering Laboratory Practical ET1102- Basic Electronics

Experiment #3 Combinational and Sequential Logic Circuit

Name:					
Index No					
Intake					
Date					
Instructor Name and Signature:					
Comments		Grade			

Objectives:

After successfully completing this experiment you would be able to;

- (a) Get familiar with Logic Gates and Flip Flops in commercially available ICs.
- (b) Identify the pin connections of ICs using data sheets.
- (c) Build simple combinational and sequential circuits.
- (d) Use logic probe to check the logic level in digital circuits.
- (e) Use logic Pulser to apply clock pulses.

Equipment required:

Components required:

Exp: 2.3 Combinational and Sequential Logic Circuit

Department of Computer Engineering, Faculty of Computing, KDU

+5V Dc power supply	IC 7400
Waveform Generator	IC 7486
Logic Probe	IC 7473 (2 nos)
Protoboard	LEDs (6 nos)
Logic Pulser	1.2K resistor

Procedure :

a) Full Adder

Full Adder has 3 inputs and 2 outputs. A_i and B_i are the two binary bits to be added and C_{i-1} is the Carry coming from the i-1th bit. Two outputs are Sum and Carry for the ith bit.

 \blacktriangleright Draw the Truth Table for the full adder and obtain expressions for S_i and C_i.

Ai	Bi	Ci-1	Si	Ci

 $S_i =$

- Build a full adder using XOR gates and NAND gates. You may use the data sheets provided to find the pin connections of the ICs.
- Verify the Truth Table for the full adder by giving inputs and measuring the output with the logic probe.
- b) Sequential Circuits with a moving band of lights.
- Connect the following circuit using JK Flip Flops. You may use the data sheets provided to find the pin connections of the ICs.

- Connect the 6 LEDs to Q₁, Q₂, Q₃, Q₁, Q₂, Q₃ pins respectively. The negative pins of LEDs should be connected together and then connected to ground through the 1.2K resistor.
- Connect the clear pins of the flip-flops to ground momentarily and then keep it permanently connected to +5 V.
- Apply clock pulses to the clock input of flip-flops using the Logic Pulsar (set the pulsar frequency to 0.5 Hz) and find the sequence of the ON LEDs.

Clock Pulse	LEDs					
	1	2	3	4	5	6

Apply a pulse train of + 5V amplitude and 10 Hz frequency to the clock input of flip flops and observe the effect of moving band of lights.

Performance Evaluation

Experiment: Combinational and Sequential Logic Circuit

	Evaluation Aspect	Marks
1	Preparation	
2	Neatness of Work	
3	Familiarity with Lab Equipment	
4	Completion of Work	
5	Capability	
6	Accuracy of Readings/ Observations	
7	Answers given to Questions	
8	Discipline	
	Total	

Marks are awarded on a 0-10 scale for each aspect

Excellent	Very Good	Good	Fair	Poor	Very Poor
10	9-8	7-6	5-4	3-2	1-0

Name of the Instructor:

Department of Computer Engineering, Faculty of Computing, KDU

Signature:	
Date:	