
 

 

 

  

Virtual Linux Lab 
A Journey to Linux Terminal 

Dr. Budditha Hettige 
Budditha@kdu.ac.lk 

 



1 | A Journey to Linux Terminal 

 

 



i |  

 

 

 

 

Virtual Linux Labs: A Student's 

Guide  

 
 

 

A Journey to Linux Terminal  

 

 

 

 

 

Dr. Budditha Hettige 

Department of Computer Engineering, General Sir John Kotelawala 

Defence University 



ii | A Journey to Linux Terminal 

 

 

 

 

 

Virtual Linux Labs: A Student's 

Guide  

 
 

 

A Journey to Linux Terminal  

 

 

 

  



iii | A Journey to Linux Terminal 

 

 

Table of Contents 
A Journey to Linux Terminal .................................................................. 1 

Introduction ..................................................................................... 1 

Working with Linux Command Line Interface (CLI) ..................... 2 

File and Directory Management ...................................................... 6 

File Content and Text Processing .................................................... 9 

System Information ......................................................................... 9 

Networking .................................................................................... 10 

User and Group Management ........................................................ 10 

Package Management .................................................................... 10 

Process Management ..................................................................... 11 

File Compression and Archiving ................................................... 11 

System Maintenance and Monitoring ............................................ 12 

Miscellaneous ................................................................................ 12 

25 Tasks with Linux Terminal ........................................................... 16 

 

 

 

 

 

  



1 | A Journey to Linux Terminal 

 

 

 

A Journey to Linux Terminal 

 

Introduction  

The Linux Terminal, also known as the command line or shell, is a text-

based interface in Linux and other Unix-like operating systems. It allows 

users to interact with the system using text commands.  

Linux Terminal Provides: 

Command Line Interface (CLI): The Linux Terminal provides a 

command-line interface where users can type commands to perform 

various tasks. 

Shell: The shell is a program that interprets and executes user commands. 

Popular shells in Linux include Bash (Bourne Again SHell), Zsh (Z 

Shell), and Fish. 

 

1 



2 | A Journey to Linux Terminal 

 

Commands: Users can execute commands to perform tasks such as file 

manipulation, directory navigation, process management, and system 

configuration. 

File System Navigation: Users can navigate the file system using 

commands like cd (change directory), ls (list files), pwd (print working 

directory), and others. 

Text-Based: Unlike graphical user interfaces (GUIs) where users interact 

with visual elements, the Linux Terminal relies on text commands and 

responses. 

Scripting: The Terminal is often used for scripting and automation, 

allowing users to create and execute scripts that perform a series of 

commands. 

Remote Access: The Terminal is commonly used for remote access to 

servers using protocols like SSH (Secure Shell), allowing users to 

manage servers without a graphical interface. 

Permissions and Security: Users can perform administrative tasks, but 

certain operations may require elevated privileges. Linux uses a 

permission system to control access to files and commands. 

 

Working with Linux Command Line Interface (CLI) 

Linux Command Line Interface (CLI) can be a powerful and efficient 

way to interact with your system. In Linux Mint, you can open the 

terminal using one of the following methods: 

Keyboard Shortcut: 

Press Ctrl + Alt + T to open the default terminal emulator. 

 

 

Menu Navigation: 



3 | A Journey to Linux Terminal 

 

1. Click on the "Terminal Icon" (usually located in the bottom-left 

corner of the screen). 

 

2. Click on the "Menu" button (usually located in the bottom-left corner 

of the screen). Then Navigate to "Accessories" or "System Tools." 

Look for an application named "Terminal" or "Xfce Terminal" and 

click on it. 

 Click on the "Menu" button (usually located in the bottom-left corner of 

the screen). 

 

Search for Terminal: 

Press the Super key (Windows key) to open the application menu. 

Start typing "Terminal" in the search bar. 

The terminal application should appear in the search results. Click on it 

to open. 

1 

2 
3 



4 | A Journey to Linux Terminal 

 

Right-Click on Desktop or File Manager: 

You can also right-click on the desktop or in a file manager window. 

From the context menu, choose "Open Terminal" or a similar option. 

 

In the Terminal you can see User name and Machine Name. 

Example: 

 

The whoami command in Linux is a simple utility that prints the 

username associated with the current user who is executing the 

command. In this example user name is user. 

 

 

Structure of a Linux Command 

The basic structure of a Linux command consists of the command itself, 

followed by options (flags), and arguments. Here's a breakdown of the 

typical structure: 

User Name @ Machine Name 



5 | A Journey to Linux Terminal 

 

command [options] [arguments] 

Command: The actual command you want to execute, like ls, cp, mkdir, 

etc. 

Options (Flags): Optional settings that modify the behavior of the 

command. They are typically preceded by a hyphen (-). Options can be 

single-letter (short options) or words (long options). For example: 

ls  

ls -l      

The ls command is one of the most commonly used commands in Linux. 

It is used to list the files and directories in a directory. 

 

Arguments: The input data for the command. These can be file names, 

directory names, or other parameters required by the command. For 

example: 

cp file1.txt file2.txt    

file1.txt and file2.txt are arguments 

 

Note:  

The man command is used to display the manual pages for various 

commands in Linux. If you want to learn more about the ls command, 

you can use the following command to access its manual page: 

man ls 



6 | A Journey to Linux Terminal 

 

This command opens the manual page for ls, providing detailed 

information about the command, its options, and usage. The manual page 

is typically divided into sections, including: 

 NAME: The name of the command and a brief description. 

 SYNOPSIS: The command syntax and available options. 

 DESCRIPTION: A more detailed explanation of the command 

and its functionality. 

 OPTIONS: Detailed information about the command-line 

options. 

 EXAMPLES: Illustrative examples of command usage. 

 SEE ALSO: References to related commands or documentation. 

To navigate through the manual page, you can use the arrow keys, the 

Page Up and Page Down keys, and press q to exit and return to the 

command line. 

File and Directory Management 

The Linux file system structure is organized in a hierarchical tree-like 

manner, with the root directory ("/") at the top. Here are key directories 

and their purposes in the Linux file system: 

 

Sample Linux File System 



7 | A Journey to Linux Terminal 

 

/ (Root Directory): The top-level directory in the Linux file system 

hierarchy. All other directories and files are subdirectories or files within 

the root directory. 

/bin (Binary Binaries): Essential system binaries (commands) that are 

required for the system to boot and run, and which are accessible to all 

users. 

/boot (Boot Loader Files): Contains the kernel and files used during the 

boot process. 

/dev (Device Files): Contains device files representing hardware devices 

attached to the system, such as disk drives, printers, and terminals. 

/etc (Configuration Files): System-wide configuration files and shell 

scripts used by system administrators for system configuration. 

/home (Home Directories): Home directories for regular users. Each 

user has their own subdirectory within /home where they can store 

personal files and configurations. 

/lib and /lib64 (Libraries): Essential shared libraries needed by 

system binaries and commands. 

/media (Removable Media Mount Points): Mount points for 

removable media such as USB drives and external hard disks. 

/mnt (Temporary Mount Points): Mount points for temporary 

mounting of filesystems. 

/opt (Optional Software Packages): Directory for optional software 

packages, typically provided by third-party vendors. 

/proc (Process Information): A virtual filesystem that provides 

information about processes as files. It is used to interact with the kernel. 

/root (Root User's Home Directory): The home directory for the root 

user. 



8 | A Journey to Linux Terminal 

 

/run (Runtime Data): Contains system runtime data such as process IDs 

and socket files. 

/sbin (System Binaries): System binaries (commands) used for system 

administration. These binaries are typically only used by the system 

administrator. 

/srv (Service Data): Contains data for services provided by the system. 

/sys (Sysfs Virtual File System): A virtual filesystem that exposes 

information about devices, kernel parameters, and other kernel-related 

information. 

/tmp (Temporary Files): A directory for temporary files that are not 

expected to persist across reboots. 

/usr (User Binaries and Data): User-related programs and files. It is 

typically read-only after the system is installed. 

/var (Variable Data): Variable files such as logs, spool files, and 

temporary files. This directory contains data that may change frequently. 

/libexec (Library Executables): Contains internal binaries that are not 

intended to be executed directly by users or scripts. 

Following command are the basic File and directory processing 

commands. 

1. ls: List files and directories. 

2. cd: Change directory. 

3. pwd: Print working directory. 

4. cp: Copy files or directories. 

5. mv: Move or rename files or directories. 

6. rm: Remove (delete) files or directories. 

7. mkdir: Create a new directory. 

8. rmdir: Remove an empty directory. 

9. chmod: Change file permissions. 

10. chown: Change file ownership. 

11. ln: Create links to files. 



9 | A Journey to Linux Terminal 

 

12. cat: Concatenate and display file content. 

13. head: Display the first part of a file. 

14. tail: Display the last part of a file. 

15. nano: Text editor. 

16. vim: Advanced text editor. 

17. find: Search for files in a directory hierarchy. 

18. grep: Search for a pattern in files. 

19. sort: Sort lines of text files. 

20. tar: Create and extract archive files. 

File Content and Text Processing 

21. awk: Pattern scanning and processing language. 

22. sed: Stream editor for text manipulation. 

23. cut: Remove sections from each line of a file. 

24. uniq: Report or omit repeated lines. 

25. wc: Print the number of lines, words, and bytes in a file. 

26. tee: Redirect output to multiple files and display. 

27. diff: Compare files line by line. 

28. tr: Translate or delete characters. 

29. paste: Merge lines of files. 

30. join: Join lines of two files on a common field. 

System Information 

31. uname: Display system information. 

32. uptime: Show system uptime. 

33. hostname: Display or set the system hostname. 

34. df: Display disk space usage. 

35. free: Display memory usage. 

36. ps: Display information about running processes. 

37. top: Display and update sorted information about processes. 

38. kill: Terminate a process. 

39. killall: Kill processes by name. 

40. pkill: Signal processes based on name. 



10 | A Journey to Linux Terminal 

 

Networking 

41. ping: Check network connectivity. 

42. traceroute: Print the route that packets take to reach a net-

work host. 

43. ifconfig: Configure network interfaces (deprecated, use ip). 

44. ip: Display and manipulate network interfaces. 

45. netstat: Display network connections, routing tables, inter-

face statistics. 

46. route: Show or manipulate the IP routing table. 

47. ss: Display socket statistics. 

48. nslookup: Query Internet domain name servers. 

49. dig: DNS lookup utility. 

50. host: DNS lookup utility. 

 

 

User and Group Management 

51. passwd: Change user password. 

52. useradd: Create a new user. 

53. userdel: Delete a user. 

54. usermod: Modify user attributes. 

55. groupadd: Create a new group. 

56. groupdel: Delete a group. 

57. groupmod: Modify group attributes. 

58. who: Display who is logged in. 

59. w: Show who is logged in and what they are doing. 

60. id: Display user and group information. 

Package Management 

61. apt/apt-get: Package management for Debian/Ubuntu. 

62. dpkg: Debian package management. 



11 | A Journey to Linux Terminal 

 

63. yum/dnf: Package management for RHEL/CentOS/Fedora. 

64. rpm: RPM package management. 

65. zypper: Package management for openSUSE. 

66. pacman: Package management for Arch Linux. 

67. snap: Package management for Snappy. 

68. flatpak: Package management for Flatpak. 

69. dpkg-reconfigure: Reconfigure an installed package. 

70. aptitude: A high-level interface to the package management 

system. 

Process Management 

71. ps: Display information about running processes. 

72. kill: Terminate a process. 

73. killall: Kill processes by name. 

74. pkill: Signal processes based on name. 

75. pgrep: List processes based on name. 

76. nice: Run a program with modified scheduling priority. 

77. renice: Alter priority of running processes. 

78. jobs: Display status of jobs. 

79. bg: Put a job in the background. 

80. fg: Bring a job to the foreground. 

File Compression and Archiving 

81. gzip: Compress or decompress files. 

82. gunzip: Decompress files compressed by gzip. 

83. bzip2: Compress or decompress files using bzip2. 

84. tar: Create and extract archive files. 

85. zip: Package and compress or decompress files. 

86. unzip: Decompress zip archives. 

87. xz: Compress or decompress files using xz. 

88. compress: Compress or decompress files using compress. 

89. cpio: Copy files in and out of archives. 

90. rar: Create and extract RAR archives. 



12 | A Journey to Linux Terminal 

 

System Maintenance and Monitoring 

91. fsck: File system consistency check. 

92. du: Display disk usage of directories. 

93. df: Display disk space usage. 

94. fdisk: Partition table manipulator. 

95. mount: Mount a filesystem. 

96. umount: Unmount a filesystem. 

97. chkconfig: System services configuration. 

98. systemctl: System and service manager. 

99. journalctl: Query and display messages from the journal. 

100. dmesg: Display or control the kernel ring buffer. 

 

Miscellaneous 

101. echo: Display a message. 

102. export: Set an environment variable. 

103. history: Display command history. 

104. source: Execute commands from a file. 

105. alias: Create an alias for a command. 

106. env: Display environment variables. 

107. whoami: Print the effective username. 

108. who: Display who is logged in. 

109. w: Show who is logged in and what they are doing. 

110. finger: Display information about users. 

111. shutdown: Halt or reboot the system. 

112. reboot: Reboot the system. 

113. halt: Halt the system. 

114. init: System and service manager. 

115. runlevel: Display previous and current system runlevel. 

116. cron: Schedule tasks to run periodically. 

117. anacron: Run jobs periodically. 

118. systemd: System and service manager. 



13 | A Journey to Linux Terminal 

 

119. hostnamectl: Query and change the system hostname and re-

lated settings. 

120. ip: Display and manipulate network interfaces. 

121. scp: Secure copy files between hosts using SSH. 

122. rsync: Remote file and directory synchronization. 

123. wget: Download files from the internet. 

124. curl: Command-line tool for transferring data with URL syn-

tax. 

125. ftp: File Transfer Protocol client. 

126. sftp: Secure File Transfer Protocol. 

127. ncftp: Browser program for the File Transfer Protocol. 

128. lftp: Sophisticated file transfer program. 

129. nc: Netcat - networking utility for reading/writing network con-

nections. 

130. tftp: Trivial File Transfer Protocol. 

131. chown: Change file owner and group. 

132. chgrp: Change group ownership of files. 

133. chmod: Change file modes or Access Control Lists (ACLs). 

134. umask: Set the file creation mask. 

135. su: Run a shell with substitute user and group IDs. 

136. sudo: Execute a command as another user. 

137. chroot: Change the root directory. 

138. adduser: Add a user to the system. 

139. deluser: Remove a user from the system. 

140. passwd: Change user password. 

141. awk: Pattern scanning and processing language. 

142. sed: Stream editor for filtering and transforming text. 

143. grep: Search text using patterns. 

144. cut: Remove sections from each line of a file. 

145. tr: Translate or delete characters. 

146. uniq: Report or omit repeated lines. 

147. paste: Merge lines of files. 

148. comm: Compare two sorted files line by line. 



14 | A Journey to Linux Terminal 

 

149. fmt: Reformat paragraph text. 

150. fold: Wrap input lines to fit in specified width. 

151. shutdown: Halt or reboot the system. 

152. reboot: Reboot the system. 

153. halt: Halt the system. 

154. init: System and service manager. 

155. runlevel: Display previous and current system runlevel. 

156. cron: Schedule tasks to run periodically. 

157. anacron: Run jobs periodically. 

158. systemd: System and service manager. 

159. journalctl: Query and display messages from the journal. 

160. hostnamectl: Query and change the system hostname and re-

lated settings. 

161. ip: Display and manipulate network interfaces. 

162. route: Show or manipulate the IP routing table. 

163. ifconfig: Configure network interfaces (deprecated, use ip). 

164. iwconfig: Configure wireless network interfaces. 

165. tcpdump: Dump traffic on a network. 

166. wireshark: Network protocol analyzer. 

167. arp: Display or modify the ARP cache. 

168. dig: DNS lookup utility. 

169. nslookup: Query Internet domain name servers. 

170. netcat: Read and write data across network connections. 

171. scp: Secure copy files between hosts using SSH. 

172. rsync: Remote file and directory synchronization. 

173. wget: Download files from the internet. 

174. curl: Command-line tool for transferring data with URL syn-

tax. 

175. ftp: File Transfer Protocol client. 

176. sftp: Secure File Transfer Protocol. 

177. ncftp: Browser program for the File Transfer Protocol. 

178. lftp: Sophisticated file transfer program. 



15 | A Journey to Linux Terminal 

 

179. nc: Netcat - networking utility for reading/writing network con-

nections. 

180. tftp: Trivial File Transfer Protocol. 

181. nano: Simple text editor. 

182. vim: Advanced text editor. 

183. emacs: Extensible, customizable text editor. 

184. sed: Stream editor for filtering and transforming text. 

185. awk: Pattern scanning and processing language. 

186. echo: Display a message. 

187. cat: Concatenate and display file content. 

188. tee: Redirect output to multiple files and display. 

189. head: Display the first part of a file. 

190. tail: Display the last part of a file. 

191. htop: Interactive process viewer. 

192. nload: Displays incoming and outgoing traffic separately. 

193. iftop: Real-time console-based network bandwidth monitoring 

tool. 

194. iotop: Display I/O usage information for processes. 

195. top: Display and update sorted information about processes. 

196. atop: Advanced interactive system monitor. 

197. dstat: Versatile resource statistics tool. 

198. glances: An eye on your system. 

199. bmon: Bandwidth monitor and rate estimator. 

200. vnstat: Console-based network traffic monitor. 

Use the man command for detailed information on each command's op-

tions and usage. 

 

 

 

 



16 | A Journey to Linux Terminal 

 

 

 

25 Tasks with Linux Terminal 

 

1. List files and directories 

The ls command in Linux is used to list the files and directories in a 

directory. Here are some common options and examples: 

  Ls 

 

This will list the files and directories in the current directory. 

List with Details: 

  ls -l 

This command provides a detailed listing that includes information like 

permissions, number of links, owner, group, size, and modification time. 

 

List All Files (including hidden): 

  ls -a 

This command shows all files, including hidden files (those starting with 

a dot). 

2 



17 | A Journey to Linux Terminal 

 

 

List with Human-Readable File Sizes: 

  ls –lh 

 

This command provides a detailed listing with file sizes in a human-

readable format. 

List All Files Recursively: 

  ls -R 

This command lists all files and directories recursively. 

Sort Files by Modification Time: 

  ls -lt 

This command lists files sorted by modification time, with the newest 

files first. 

Reverse Order Sorting: 

  ls -l –r 

 

This command lists files in reverse order. 

List Directories Only: 



18 | A Journey to Linux Terminal 

 

  ls -l -d */ 

This command lists only directories. 

 

2. Change the current working directory  

In Linux and Unix-like operating systems, the cd command is used to 

change the current working directory. Here are some examples of using 

the cd command: 

Change to the Home Directory: 

  cd 

This command takes you to your home directory. 

Change to a Specific Directory: 

  cd /path/to/directory 

Replace "/path/to/directory" with the actual path of the directory you 

want to change to. 

Move Up One Directory: 

  cd .. 

This command moves you up one level in the directory hierarchy. 

Move Up Two Directories: 

bash 

  cd ../.. 

You can use ../.. to move up two levels, and so on. 

Move to the Previous Directory: 

  cd - 

This command takes you to the previous working directory. 

 



19 | A Journey to Linux Terminal 

 

Change to a Directory Relative to the Current Directory: 

  cd relative/directory/path 

This command allows you to move to a directory that is relative to your 

current location. 

Change to the Previous Directory with a Specific Name: 

  cd ~username 

Replace "username" with the actual username. This command takes you 

to the home directory of the specified user. 

Use of Environment Variables: 

  cd $SOME_VARIABLE 

If you have an environment variable set with a directory path, you can 

use it with the cd command. 

Remember that file and directory names in Linux are case-sensitive. 

Also, using tab completion can help you navigate more efficiently by 

automatically completing directory and file names as you type. 

 

3. Print working directory  

The pwd command in Linux and Unix-like operating systems stands for 

"print working directory." It is used to display the current working 

directory, showing the full path to the current location in the file system. 

pwd 

Running this command will print the absolute path of the current working 

directory to the terminal. 

 



20 | A Journey to Linux Terminal 

 

pwd is useful when you want to verify your current location in the file 

system or when you need to reference the full path in scripts or other 

commands. 

4. copy files or directories 

The cp command in Linux and Unix-like operating systems is used to 

copy files or directories from one location to another. Here's the basic 

syntax: 

cp [options] source destination 

source: Specifies the source file or directory. 

destination: Specifies the destination directory. 

Examples: 

Copy a File to a Directory: 

  cp file.txt /path/to/destination/ 

This command copies the file "file.txt" to the specified destination 

directory. 

Copy Multiple Files to a Directory: 

cp file1.txt file2.txt /path/to/destination/ 

You can copy multiple files in a single command. 

Copy a Directory and Its Contents Recursively: 

  cp -r source_directory /path/to/destination/ 

The -r (or -R) option is used for recursive copying. 

Preserve Timestamps: 

  cp -p file.txt /path/to/destination/ 

The -p option preserves the timestamps (modification and access times) 

of the original file. 



21 | A Journey to Linux Terminal 

 

Interactive Mode: 

  cp -i file.txt /path/to/destination/ 

The -i option prompts for confirmation before overwriting an existing 

file. 

Force Overwriting without Confirmation: 

  cp -f file.txt /path/to/destination/ 

The -f option forces the copy operation without prompting for 

confirmation, even if the destination file already exists. 

Copy and Display Progress: 

bash 

  cp -v file.txt /path/to/destination/ 

The -v option (verbose) displays the files being copied. 

Copy Symbolic Links as Links: 

  cp -d file.txt /path/to/destination/ 

The -d option copies symbolic links as links rather than dereferencing 

them. 

These are just a few examples, and there are more options available. You 

can explore additional options and details in the manual pages by typing 

man cp in the terminal. 

 

5. move or rename files and directories 

The mv command in Linux and Unix-like operating systems is used to 

move or rename files and directories. The basic syntax is: 

mv [options] source destination 

source: Specifies the source file or directory. 



22 | A Journey to Linux Terminal 

 

destination: Specifies the destination directory or new name. 

Examples: 

Move a File to a Directory: 

  mv file.txt /path/to/destination/ 

This command moves the file "file.txt" to the specified destination 

directory. 

Move and Rename a File: 

  mv oldfile.txt newfile.txt 

This command renames "oldfile.txt" to "newfile.txt" in the same 

directory. 

Move Multiple Files to a Directory: 

  mv file1.txt file2.txt /path/to/destination/ 

You can move multiple files to a destination directory. 

Move a Directory and Its Contents: 

  mv sourcedir/ /path/to/destination/ 

This command moves the entire directory and its contents to the specified 

destination. 

Interactive Mode: 

  mv -i file.txt /path/to/destination/ 

The -i option prompts for confirmation before overwriting an existing 

file. 

Force Overwriting without Confirmation: 

  mv -f file.txt /path/to/destination/ 

The -f option forces the move operation without prompting for 

confirmation, even if the destination file already exists. 



23 | A Journey to Linux Terminal 

 

6.  rm: Remove (delete) files or directories 

The rm command in Linux and Unix-like operating systems is used to 

remove or delete files and directories. It can be a powerful command, so 

use it with caution as it permanently deletes files. The basic syntax is: 

   rm [options] file1 file2 ... 

Examples: 

Remove a File: 

  rm file.txt 

This command deletes the file "file.txt." 

Remove Multiple Files: 

  rm file1.txt file2.txt 

You can remove multiple files in a single command. 

Remove a Directory and Its Contents Recursively: 

  rm -r directory/ 

The -r (or -R) option is used for recursive removal, deleting the specified 

directory and its contents. 

Force Removal without Confirmation: 

  rm -f file.txt 

The -f option forces the removal without prompting for confirmation. 

Interactive Mode: 

  rm -i file.txt 

The -i option prompts for confirmation before each file is removed. 

Remove Empty Directories: 

  rm -d empty_directory/ 

The -d option removes empty directories. 



24 | A Journey to Linux Terminal 

 

Verbose Mode: 

  rm -v file.txt 

The -v option (verbose) displays the files being removed. 

Remove Directories and Their Contents, Prompting for Confirmation: 

  rm -ri directory/ 

The combination of -r and -i recursively removes directories, 

prompting for confirmation. 

Remove Files Matching a Pattern: 

  rm *.txt 

This command removes all files with the ".txt" extension in the current 

directory. 

Remember to be careful when using the rm command, especially with the 

-r option, as it can delete files and directories irreversibly. Always 

double-check your command before executing it to avoid accidental data 

loss. 

 

7. mkdir: Create a new directory 

The mkdir command in Linux and Unix-like operating systems is used 

to create new directories (folders). The basic syntax is straightforward: 

mkdir [options] directory_name 

Examples: 

Create a New Directory: 

  mkdir new_directory 

This command creates a new directory named "new_directory" in the 

current working directory. 

Create Multiple Directories: 



25 | A Journey to Linux Terminal 

 

  mkdir dir1 dir2 dir3 

You can create multiple directories in a single command. 

Create Nested Directories: 

  mkdir -p parent_directory/child_directory 

The -p option creates both the parent and child directories. If the parent 

directory doesn't exist, it will be created. 

Create Directories with Specific Permissions: 

  mkdir -m 755 new_directory 

The -m option allows you to set specific permissions for the new 

directory. In this example, the permissions are set to 755. 

Create Directories with Verbose Output: 

  mkdir -v new_directory 

The -v option (verbose) displays a message for each directory created. 

Create Directories with a Specific Group: 

  mkdir -g group_name new_directory 

The -g option allows you to set the group ownership of the new directory. 

Create Directories with a Specific User and Group: 

  mkdir -m 755 -o username -g groupname new_directory 

This example combines options to set permissions, user ownership, and 

group ownership. 

Create Temporary Directories: 

mkdir -p /tmp/my_temp_directory 

You can use mkdir to create temporary directories, for example, in the 

"/tmp" directory. 



26 | A Journey to Linux Terminal 

 

These are just a few examples, and there are more options available. You 

can explore additional options and details in the manual pages by typing 

man mkdir in the terminal 

 

8. rmdir: Remove an directory 

The rmdir command in Linux and Unix-like operating systems is used 

to remove empty directories. Unlike the rm command, which can delete 

directories and their contents, rmdir is specifically designed for 

removing directories that do not contain any files or subdirectories. The 

basic syntax is: 

rmdir [options] directory_name 

Examples: 

Remove an Empty Directory: 

  rmdir empty_directory 

This command removes the specified empty directory. 

Remove Multiple Empty Directories: 

  rmdir dir1 dir2 dir3 

You can remove multiple empty directories in a single command. 

Remove Nested Empty Directories: 

  rmdir -p parent_directory/child_directory 

The -p option removes both the parent and child directories. If the parent 

directory becomes empty after removing the child directory, it is also 

removed. 

Remove Empty Directories Verbosely: 

  rmdir -v empty_directory 

The -v option (verbose) displays a message for each directory removed. 



27 | A Journey to Linux Terminal 

 

Attempt Recursive Removal (Not Recommended): 

  rmdir -r empty_directory 

Some versions of rmdir support the -r option to attempt a recursive 

removal, but this is not a standard feature. The recommended way to 

remove non-empty directories is to use the rm -r command. 

Force Removal without Confirmation: 

   rmdir -rf empty_directory 

Some versions of rmdir allow combining options like -r and -f to force 

the removal of a non-empty directory, but this is not standard behavior. 

Again, using rm -rf is the more common approach for forcefully 

removing directories. 

It's important to note that rmdir is designed specifically for empty 

directories. If you want to remove directories and their contents, you 

should use the rm -r command instead. Always exercise caution when 

removing directories to avoid accidental data loss. 

 

9. chmod change the permissions 

The chmod command in Linux and Unix-like operating systems is used 

to change the permissions (read, write, execute) of files and directories. 

The basic syntax is: 

   chmod [options] permissions file_or_directory 

Examples: 

Symbolic Representation of Permissions: 

  chmod u+x file.txt 

This example adds execute permission to the owner of the file. 

Numeric Representation of Permissions: 

  chmod 644 file.txt 



28 | A Journey to Linux Terminal 

 

This example sets read and write permissions for the owner and read-

only permissions for group and others. 

Recursively Change Permissions: 

  chmod -R 755 directory/ 

The -R option is used for recursive changes, applying the specified 

permissions to the directory and its contents. 

Grant Full Permissions to Owner: 

  chmod u+rwx file.txt 

This example grants read, write, and execute permissions to the owner of 

the file. 

Revoke Write Permission from Group and Others: 

  chmod go-w file.txt 

This command removes write permission from both the group and others. 

Add Execute Permission for Everyone: 

  chmod a+x script.sh 

This example adds execute permission for all users (owner, group, and 

others). 

Assign Permissions Using Octal Notation: 

  chmod 600 private_file.txt 

This sets read and write permissions for the owner only. 

Change Group Ownership: 

  chmod g+s shared_directory 

The g+s sets the group ID on execution (SGID) bit, which causes new 

files and subdirectories created in the directory to inherit the group 

ownership of the directory. 

Remove Execute Permission Recursively: 



29 | A Journey to Linux Terminal 

 

   chmod -R a-x directory/ 

The -R option is used for recursive changes, removing execute 

permission from all users in the specified directory and its subdirectories. 

Note: 

In Linux and Unix-like operating systems, file and directory permissions 

are crucial for controlling access to resources. Permissions are assigned 

to three categories of users: the owner of the file or directory, the group 

associated with the file or directory, and everyone else (others). The three 

basic permissions are read (r), write (w), and execute (x).  

Symbolic Representation: 

Read (r): 

For files: Allows reading the content of the file. 

For directories: Allows listing the contents of the directory. 

Write (w): 

For files: Allows modifying the content of the file. 

For directories: Allows creating, deleting, and renaming files within the 

directory. 

Execute (x): 

For files: Allows executing the file if it's a program or script. 

For directories: Allows access to the contents of the directory. 

Symbolic Notation: 

 u: Owner (user) 

 g: Group 

 o: Others (everyone else) 

 a: All (u + g + o) 



30 | A Journey to Linux Terminal 

 

Examples: 

Changing Permissions Symbolically: 

  chmod u+rwx file.txt 

This grants read, write, and execute permissions to the owner of "file.txt." 

Changing Permissions Using Octal Notation: 

chmod 644 file.txt 

This sets read and write permissions for the owner and read-only 

permissions for group and others. 

Octal Notation: 

Octal notation is a numeric representation of permissions using a three-

digit number. 

Octal Notation Format: 

  chmod xyz file_or_directory 

x: Represents the owner's permissions (4 for read, 2 for write, 1 for 

execute). 

y: Represents the group's permissions (same values as x). 

z: Represents others' permissions (same values as x). 

Examples: 

# Give read and write permissions to the owner, and read-

only permissions to the group and others 

chmod 644 file.txt 

# Give full permissions (read, write, execute) to the owner, 

and read and execute permissions to the group and others 

chmod 711 script.sh 

Viewing Permissions: 



31 | A Journey to Linux Terminal 

 

ls -l Command Output: The ls -l command displays a detailed list of 

files and directories along with their permissions. 

bash 

$ ls -l 

-rw-r--r--  1 user group  1234 Jan  1 12:34 file.txt 

drwxr-xr-x  2 user group  4096 Jan  1 12:34 directory 

In the above example: 

file.txt has read and write permissions for the owner, and read-only 

permissions for the group and others. 

directory has read, write, and execute permissions for the owner, and 

read and execute permissions for the group and others. 

Changing Ownership: 

chown Command: The chown command is used to change the owner and 

group of a file or directory. 

chown newowner:newgroup file.txt 

Special Permissions: 

Set User ID (SUID) and Set Group ID (SGID): These special 

permissions, when set on an executable file, allow the file to be executed 

with the permissions of the file owner or group owner. 

chmod u+s executable_file 

chmod g+s directory 

Sticky Bit: The sticky bit, when set on a directory, allows only the owner 

to delete or rename files within that directory. 

chmod +t directory 

 

10. change the ownership of files and directories 



32 | A Journey to Linux Terminal 

 

In Linux and Unix-like operating systems, the chown command is used 

to change the ownership of files and directories. The basic syntax is: 

chown [options] new_owner:new_group file_or_directory 

new_owner: Specifies the new owner for the file or directory. 

new_group: Specifies the new group for the file or directory. 

file_or_directory: Specifies the file or directory whose ownership is 

to be changed. 

Examples: 

Change Ownership of a File: 

  chown newuser:newgroup file.txt 

This command changes the owner of "file.txt" to "newuser" and the group 

to "newgroup." 

Change Ownership of a Directory: 

  chown -R newuser:newgroup directory/ 

The -R option is used for recursive ownership change, affecting the 

specified directory and its contents. 

Change Only the Owner: 

  chown newuser file.txt 

This changes only the owner of "file.txt" while keeping the group 

unchanged. 

Change Only the Group: 

  chown :newgroup file.txt 

This changes only the group of "file.txt" while keeping the owner 

unchanged. 

Change Ownership Using the Numeric User ID (UID) and Group ID 

(GID): 



33 | A Journey to Linux Terminal 

 

  chown 1001:1001 file.txt 

This changes the owner and group of "file.txt" using their numeric user 

ID and group ID. 

Change Ownership of Symlink (Symbolic Link): 

  chown newuser:newgroup symlink 

This changes the ownership of the symbolic link itself, not the target of 

the link. 

Preserve Existing Ownership of a File (Non-root User): 

   chown --preserve-root file.txt 

This is a safety measure to prevent accidental ownership changes to 

critical system files when executed by a non-root user. 

Remember that changing ownership usually requires superuser privileges 

(root access), especially when changing ownership of files outside your 

home directory. You can use sudo before the chown command to execute 

it with elevated privileges. Always exercise caution when changing 

ownership to avoid unintended consequences. 

 

 

11. ln: Create links to files 

The ln command in Linux and Unix-like operating systems is used to 

create links between files. There are two types of links: hard links and 

symbolic (or soft) links. 

Basic Syntax: 

   ln [options] source_file [link_name] 

source_file: Specifies the file for which you want to create a link. 

link_name: Specifies the name of the link to be created. If not provided, 

the link will have the same name as the source file. 



34 | A Journey to Linux Terminal 

 

Types of Links: 

1. Hard Links: 

Hard links are essentially multiple directory entries (filenames) pointing 

to the same inode (file content). Deleting any hard link does not affect 

the other links, as they all point to the same data on disk. 

Creating a Hard Link: 

ln source_file hard_link 

 

2. Symbolic (Soft) Links: 

Symbolic links are separate files that store the pathname of the target file 

or directory. They act as references to the target, and changes to the 

target's name or location do not affect the symbolic link. 

Creating a Symbolic Link: 

ln -s source_file symbolic_link 

Examples: 

Hard Link Example: 

$ ln file.txt hard_link 

$ ls -i file.txt hard_link 

123456 file.txt  123456 hard_link 

In this example, both file.txt and hard_link share the same inode. 

Symbolic Link Example: 

$ ln -s file.txt symbolic_link 

$ ls -l file.txt symbolic_link 

-rw-r--r-- 1 user group  1234 Jan  1 12:34 file.txt 



35 | A Journey to Linux Terminal 

 

lrwxrwxrwx 1 user group     8 Jan  1 12:35 symbolic_link -

> file.txt 

In this example, symbolic_link is a symbolic link pointing to 

file.txt. 

Common Options: 

-s: Create symbolic links. 

-i: Prompt before overwriting an existing file. 

-v: Be verbose, showing files as they are processed. 

-b: Create a backup of the target file before linking. 

Important Points: 

 Hard links cannot span filesystems or partitions. 

 Symbolic links can point to directories. 

 Deleting the original file does not affect hard links but breaks 

symbolic links. 

 Changes to the content of the original file are reflected in all hard 

links. 

 Symbolic links can have relative or absolute paths as targets. 

 Always be cautious when using ln, especially when creating links 

that span different filesystems or when dealing with critical 

system files 

 

12. Cat display the content of files 

The cat command in Linux and Unix-like operating systems is used to 

concatenate and display the content of files. It is a versatile command that 

can be used for various purposes related to manipulating and viewing text 

files. Here is the basic syntax: 

cat [options] [file1] [file2]... 



36 | A Journey to Linux Terminal 

 

file1, file2, ...: Specifies the files whose content you want to 

concatenate and display. 

Display the Content of a File: 

  cat filename 

This command displays the content of the specified file on the terminal. 

Concatenate Multiple Files: 

  cat file1 file2 

This command concatenates the content of file1 and file2 and displays 

it on the terminal. 

Concatenate and Redirect Output to a New File: 

cat file1 file2 > combined_file 

This command concatenates the content of file1 and file2 and 

redirects the output to a new file named combined_file. 

Common Options: 

-n: Number all output lines. 

-b: Number non-empty output lines. 

-s: Squeeze multiple adjacent empty lines into one. 

-E: Display a $ character at the end of each line. 

-A: Display non-printing characters, except for tabs and the end of line 

character. 

-T: Display tabs as ^I. 

-v: Display non-printing characters as ^ and the character itself. 

Examples: 

Display the Content of Multiple Files with Line Numbers: 



37 | A Journey to Linux Terminal 

 

 cat -n file1 file2 

Concatenate Files and Display Non-Printable Characters: 

  cat -v file1 file2 

Concatenate and Number Only Non-Empty Lines: 

  cat -b file1 file2 

Display Contents of a File with Line Numbers and Show the End of Each 

Line: 

cat -n -E filename 

 

Important Points: 

The cat command is not only used for concatenation; it is also frequently 

used for simply displaying the content of a file. 

For concatenating large files or when dealing with binary files, cat may 

not be the most efficient tool. 

 

13. head: Display the first part of a file 

The head command in Linux and Unix-like operating systems is used to 

display the first part of a file. By default, it shows the first 10 lines of a 

file, but you can specify a different number of lines as well. Here is the 

basic syntax: 

head [options] [file1] [file2]... 

file1, file2, ...: Specifies the files whose beginning you want to 

display. 

Basic Usage: 

Display the First 10 Lines of a File: 

  head filename 



38 | A Journey to Linux Terminal 

 

This command displays the first 10 lines of the specified file on the 

terminal. 

Display the First N Lines of a File: 

  head -n N filename 

This command displays the first N lines of the specified file, where N is 

a positive integer. 

 

Common Options: 

   -n N or --lines=N: Display the first N lines of each file. 

   -c N or --bytes=N: Display the first N bytes of each file. 

   -q or --quiet: Suppress headers (file names) when displaying 

multiple files. 

Examples: 

Display the First 5 Lines of a File: 

  head -n 5 filename 

Display the First 20 Bytes of a File: 

  head -c 20 filename 

Display the First 10 Lines of Multiple Files Without Showing File 

Names: 

  head -q file1 file2 

Important Points: 

By default, head displays the first 10 lines, but you can change the 

number by using the -n option. 



39 | A Journey to Linux Terminal 

 

If multiple files are specified, head displays the first few lines of each 

file, preceded by the file name unless the -q option is used to suppress 

headers. 

The head command is useful when you want to quickly preview the 

beginning of a file without loading the entire contents into the terminal. 

For displaying the tail (last part) of a file, you can use the tail command, 

which operates in a similar fashion but shows the end of the file instead. 

 

 

14. tail: Display the last part of a file 

The tail command in Linux and Unix-like operating systems is used to 

display the last part of a file. It is often used to monitor log files or view 

the most recent additions to a file. Here is the basic syntax: 

tail [options] [file1] [file2]... 

file1, file2, ...: Specifies the files whose end you want to display. 

Basic Usage: 

Display the Last 10 Lines of a File: 

  tail filename 

This command displays the last 10 lines of the specified file on the 

terminal. 

Display the Last N Lines of a File: 

tail -n N filename 

This command displays the last N lines of the specified file, where N is 

a positive integer. 

Common Options: 

-n N or --lines=N: Display the last N lines of each file. 



40 | A Journey to Linux Terminal 

 

-c N or --bytes=N: Display the last N bytes of each file. 

**-f or --follow: Output appended data as the file grows (similar to 

tail -f). 

**-q or --quiet: Suppress headers (file names) when displaying 

multiple files. 

Examples: 

Display the Last 5 Lines of a File: 

  tail -n 5 filename 

Display the Last 20 Bytes of a File: 

  tail -c 20 filename 

Display the Last 10 Lines of Multiple Files Without Showing File Names: 

  tail -q file1 file2 

Follow (Monitor) a File for Changes: 

tail -f logfile 

This command continuously displays the last lines of logfile and 

updates the display as new lines are appended. 

Important Points: 

 By default, tail displays the last 10 lines, but you can change the 

number by using the -n option. 

 If multiple files are specified, tail displays the last few lines of 

each file, preceded by the file name unless the -q option is used 

to suppress headers. 

 The -f option is particularly useful for monitoring log files in 

real-time as they are updated. 

 tail is a handy command for viewing the end of files, and when 

used with the -f option, it becomes a powerful tool for 



41 | A Journey to Linux Terminal 

 

monitoring changes in log files or other dynamically updated 

files. 

 

15.  nano: Text editor. 

nano is a simple and user-friendly text editor for Unix-like operating 

systems, including Linux. It is designed to be easy to use and is 

particularly suitable for users who are new to the command line or those 

who prefer a straightforward and intuitive interface. Here is a basic 

overview of using nano: 

Opening a File: 

To open a file using nano, you can simply type: 

   nano filename 

Replace "filename" with the name of the file you want to edit. 

Basic Navigation: 

 Use arrow keys to move the cursor. 

 Page Up and Page Down keys move up and down by full screens. 

 Ctrl + B moves the cursor one page up. 

 Ctrl + F moves the cursor one page down. 

 Ctrl + P moves the cursor to the previous line. 

 Ctrl + N moves the cursor to the next line. 

Editing Text: 

 Type to insert new text. 

 Delete and Backspace keys delete characters. 

 Ctrl + K cuts (deletes) the line from the cursor position to the end 

of the line. 

 Ctrl + U cuts (deletes) the line from the cursor position to the 

beginning of the line. 

 Ctrl + Y pastes the cut text. 



42 | A Journey to Linux Terminal 

 

 Saving and Exiting: 

 Ctrl + O writes changes to the file (save). 

 Ctrl + X exits nano. 

Other Options: 

 Ctrl + G displays the help menu. 

 Ctrl + C shows the current cursor position. 

 Ctrl + \ finds and replaces text. 

 Ctrl + W searches for a specific string. 

 Ctrl + V allows you to move through the file more quickly by 

jumping to a specific line. 

Tips: 

When saving changes, nano will prompt you for the filename. Press Enter 

to confirm or provide a new filename to save as. 

You can use nano to create a new file by simply providing a new filename 

that doesn't exist yet. 

The bottom of the nano screen shows various commands you can use. 

nano provides a comfortable environment for quick and simple text 

editing within the terminal. It is an excellent choice for users who are 

new to command-line text editors and prefer a more intuitive interface. 

 

16.   vim: Advanced text editor 

Vim (Vi Improved) is an advanced text editor for Unix-like systems, and 

it is an enhanced version of the classic Unix text editor, Vi. Vim is highly 

configurable and provides powerful features for efficient text editing and 

programming. It operates in different modes, allowing users to navigate, 

edit, and manipulate text efficiently. Here's a basic overview of using 

Vim: 



43 | A Journey to Linux Terminal 

 

Opening a File: 

To open a file using Vim, you can type: 

vim filename 

Replace "filename" with the name of the file you want to edit. 

Basic Vim Modes: 

 Normal Mode (Esc to enter): 

Use arrow keys to move the cursor. 

 dd: Delete the current line. 

 yy: Yank (copy) the current line. 

 p: Paste after the cursor. 

 u: Undo the last change. 

 Ctrl + r: Redo the last change. 

 /search_term: Search forward for "search_term." 

 :q: Quit Vim. 

 Insert Mode (i to enter): 

Allows you to insert and edit text. 

 Press Esc to return to Normal Mode. 

 Visual Mode (v to enter): 

Allows you to visually select and manipulate text. 

Can be combined with other commands. 

Editing Text: 

 i: Enter Insert Mode before the cursor. 

 I: Enter Insert Mode at the beginning of the line. 

 a: Enter Insert Mode after the cursor. 

 A: Enter Insert Mode at the end of the line. 

 o: Open a new line below the current line. 

 O: Open a new line above the current line. 

 x: Delete the character under the cursor. 



44 | A Journey to Linux Terminal 

 

 r: Replace the character under the cursor with a new one. 

Saving and Exiting: 

 :w: Write (save) changes to the file. 

 :q: Quit Vim. 

 :wq or ZZ: Write changes and quit. 

 :q!: Quit without saving changes. 

Advanced Features: 

Search and Replace: 

:%s/old/new/g: Replace all occurrences of "old" with "new" in the 

entire file. 

Navigating and Scrolling: 

 Ctrl + u: Scroll half a page up. 

 Ctrl + d: Scroll half a page down. 

 Multiple Windows: 

 :sp: Split the window horizontally. 

 :vsp: Split the window vertically. 

 Ctrl + w followed by h, j, k, or l: Navigate between windows. 

Tips: 

 Vim has a steep learning curve but becomes highly efficient with 

practice. 

 The vimtutor command launches an interactive tutorial for 

learning Vim basics. 

 Vim is a powerful editor widely used for programming and 

system administration tasks. It offers a rich set of features and is 

highly extensible. While it may take some time to become 

proficient with Vim, many users find it to be an indispensable tool 

for text editing and development. 

 



45 | A Journey to Linux Terminal 

 

17.   find command 

The find command in Linux and Unix-like operating systems is used to 

search for files and directories in a directory hierarchy based on various 

criteria. Here is the basic syntax of the find command: 

find [path] [options] [expression] 

path: Specifies the starting directory for the search. If not provided, the 

search starts from the current directory. 

options: Various options that modify the behavior of the find 

command. 

expression: Specifies the search criteria or actions to be performed. 

Basic Usage: 

Find Files by Name: 

  find /path/to/search -name "filename" 

This command searches for files with the specified name in the given 

path. 

Find Files by Extension: 

  find /path/to/search -name "*.txt" 

This command searches for files with a specific extension in the given 

path. 

Find Files Modified in the Last N Days: 

  find /path/to/search -mtime -N 

This command finds files that have been modified in the last N days. 

Find Directories: 

find /path/to/search -type d 

This command finds directories in the specified path. 



46 | A Journey to Linux Terminal 

 

 

Common Options: 

-name "pattern": Search for files with a specific name or pattern. 

-type type: Search for a specific type (f for file, d for directory). 

-mtime n: Search for files modified in the last n days. 

-size n[c]: Search for files of a specific size (in blocks if c is not 

specified). 

-exec command {} +: Execute a command on the found files. 

Examples: 

Find all Files Modified in the Last 7 Days: 

  find /path/to/search -mtime -7 

Find Files Larger than 1MB: 

  find /path/to/search -size +1M 

Find and Delete Files Older than 30 Days: 

  find /path/to/search -mtime +30 -exec rm {} + 

Find and Display Files Modified Today: 

  find /path/to/search -daystart -mtime 0 

Tips: 

The find command is powerful and can be combined with various 

options and expressions for complex searches. 

Be cautious when using the -exec option, especially with commands like 

rm, to avoid unintentional data loss. 



47 | A Journey to Linux Terminal 

 

The find command is a versatile tool for searching and locating files and 

directories based on different criteria. It's commonly used in shell scripts 

and for various administrative tasks. 

18.   grep: Search for a pattern in files 

The grep command in Linux and Unix-like operating systems is used to 

search for a specific pattern or regular expression in files or text streams. 

It is a powerful and versatile tool for text searching. Here is the basic 

syntax of the grep command: 

grep [options] pattern [file...] 

pattern: The text or regular expression to search for. 

file...: The files in which to search for the pattern. If not specified, 

grep reads from standard input. 

Basic Usage: 

Search for a Pattern in a File: 

  grep "pattern" filename 

This command searches for the specified pattern in the given file. 

Search for a Pattern in Multiple Files: 

  grep "pattern" file1 file2 

This command searches for the pattern in multiple files. 

Search for a Pattern in All Files in a Directory: 

grep "pattern" /path/to/directory/* 

This command searches for the pattern in all files in the specified 

directory. 

Common Options: 

-i or --ignore-case: Perform a case-insensitive search. 



48 | A Journey to Linux Terminal 

 

-n or --line-number: Display line numbers along with matching lines. 

-r or --recursive: Search recursively through directories. 

-v or --invert-match: Invert the match, showing lines that do not 

match. 

-w or --word-regexp: Match only whole words. 

-l or --files-with-matches: Display only the names of files with at 

least one match. 

-c or --count: Display only the count of matching lines. 

Examples: 

Search for a Case-Insensitive Pattern in a File: 

  grep -i "pattern" filename 

Search for a Pattern in All Files Recursively: 

  grep -r "pattern" /path/to/directory 

Display Only File Names with Matches: 

  grep -l "pattern" /path/to/directory/* 

Count the Number of Lines Matching a Pattern: 

  grep -c "pattern" filename 

Tips: 

grep is a versatile tool for pattern matching and is often used in 

combination with other commands in pipelines. 

Regular expressions can be used as patterns for more complex searches. 

To search for a pattern in all files in a directory and its subdirectories, use 

the -r option: grep -r "pattern" /path/to/directory. 



49 | A Journey to Linux Terminal 

 

grep is a powerful and widely used command-line tool for text searching. 

It is an essential component in Unix-like systems and is commonly used 

for tasks such as log analysis, code searches, and data extraction. 

 

19.  sort: Sort lines of text files. 

The sort command in Linux and Unix-like operating systems is used to 

sort lines of text files. It arranges lines in lexicographical (dictionary) 

order by default. Here is the basic syntax of the sort command: 

sort [options] [file] 

options: Various options that modify the sorting behavior. 

file: The file whose lines you want to sort. If not specified, sort reads 

from standard input. 

Basic Usage: 

Sort Lines in a File: 

  sort filename 

This command sorts the lines in the specified file and displays the result 

on the terminal. 

Sort Lines from Standard Input: 

echo -e "apple\norange\nbanana" | sort 

This command sorts the lines provided through the echo command. 

Common Options: 

-r or --reverse: Reverse the order of the sort to descending. 

-n or --numeric-sort: Perform a numeric sort. 

-k key or --key=key: Specify a key field to use for sorting. 

-u or --unique: Remove duplicate lines from the output. 



50 | A Journey to Linux Terminal 

 

-f or --ignore-case: Perform a case-insensitive sort. 

-t character or --field-separator=character: Specify a field 

separator for key specification. 

Examples: 

Sort Lines in a File in Reverse Order: 

  sort -r filename 

Sort Lines Numerically: 

  sort -n numbers.txt 

Sort Lines Based on a Specific Field: 

  sort -t ',' -k 2 data.csv 

This command sorts a CSV file based on the second field. 

Sort and Remove Duplicate Lines: 

  sort -u filename 

Tips: 

The sort command is often used in combination with other commands 

in pipelines to perform complex text processing tasks. 

Be cautious when using sort on large files, as it may require a significant 

amount of memory. 

sort is a versatile tool that is frequently used for organizing and 

analyzing text data. It is part of the core utilities in Unix-like systems and 

is essential for various text processing tasks 

 

 

20.   tar: Create and extract archive files 



51 | A Journey to Linux Terminal 

 

The tar command in Linux and Unix-like operating systems is used to 

create and manipulate archive files. It stands for "tape archive" and is 

commonly used for bundling files and directories together into a single 

file for backup or distribution purposes. Here is the basic syntax of the 

tar command: 

Creating an Archive: 

tar [options] -cf archive.tar files... 

options: Various options that modify the behavior of tar. 

-c: Create a new archive. 

-f: Specify the archive file name. 

archive.tar: The name of the archive file to be created. 

files...: The files or directories to be included in the archive. 

Extracting from an Archive: 

tar [options] -xf archive.tar 

-x: Extract files from an archive. 

-f: Specify the archive file name. 

archive.tar: The name of the archive file from which to extract. 

Common Options: 

-v or --verbose: Display detailed information about the operation. 

-z or --gzip: Use gzip compression. 

-j or --bzip2: Use bzip2 compression. 

-C directory: Change to the specified directory before performing the 

operation. 

-t or --list: List the contents of an archive. 



52 | A Journey to Linux Terminal 

 

--exclude=PATTERN: Exclude files that match the specified pattern. 

Examples: 

Create an Archive: 

  tar -cf archive.tar file1 file2 directory 

This command creates a tar archive named archive.tar containing 

file1, file2, and the contents of the directory. 

Extract from an Archive: 

  tar -xf archive.tar 

This command extracts the contents of archive.tar in the current 

directory. 

Create a Compressed Archive (gzip): 

  tar -czf archive.tar.gz files... 

This command creates a gzipped archive named archive.tar.gz 

containing the specified files. 

Extract from a Compressed Archive (gzip): 

  tar -xzf archive.tar.gz 

This command extracts the contents of the gzipped archive 

archive.tar.gz in the current directory. 

List the Contents of an Archive: 

  tar -tf archive.tar 

This command lists the contents of the tar archive archive.tar. 

Create an Archive Excluding Files: 

   tar --exclude=*.log -cf archive.tar files... 

This command creates a tar archive excluding files with the .log 

extension. 



53 | A Journey to Linux Terminal 

 

Tips: 

 tar supports various compression formats, including gzip (-z), bzip2 

(-j), and others. 

 When creating or extracting archives, it's important to specify the 

correct options based on the compression format used. 

 tar is often used in combination with other commands, such as gzip 

or find, for more complex operations. 

 tar is a versatile tool for handling archives and is widely used in 

Unix-like systems for backup and data distribution. 

 

21.  Uname: display system information 

The uname command in Linux and Unix-like operating systems is used 

to display system information. It provides various details about the 

system, such as the operating system name, kernel version, hardware 

architecture, and more. Here is the basic syntax of the uname command: 

uname [options] 

Common Options: 

 -a or --all: Display all available information. 

 -s or --kernel-name: Display the kernel name. 

 -n or --nodename: Display the network (domain) node name. 

 -r or --kernel-release: Display the kernel release. 

 -v or --kernel-version: Display the kernel version. 

 -m or --machine: Display the machine hardware name. 

 -p or --processor: Display the processor type. 

 -i or --hardware-platform: Display the hardware platform. 

 -o or --operating-system: Display the operating system. 

Examples: 

Display All Information: 



54 | A Journey to Linux Terminal 

 

  uname -a 

This command displays all available information about the system. 

Display Kernel Name: 

  uname -s 

This command displays the kernel name. 

 Display Network Node Name: 

  uname -n 

This command displays the network (domain) node name. 

The uname command is useful for obtaining basic system information and 

is often used in scripts or when troubleshooting. 

The -a option is commonly used to display all available information 

about the system in a comprehensive manner. 

uname is a simple yet handy command for obtaining information about 

the system configuration. It is commonly used to check the operating 

system and kernel details when working on Unix-like systems. 

 

22.   Uptime 

The uptime command in Linux and Unix-like operating systems is used 

to display the system's uptime and load averages. It provides information 

about how long the system has been running since the last reboot, as well 

as the average system load over the last 1, 5, and 15 minutes. Here is the 

basic syntax of the uptime command: 

uptime 

Example: 

 



55 | A Journey to Linux Terminal 

 

Tips: 

 The load averages represent the average number of processes that 

are either in a runnable or uninterruptible state. A high load 

average may indicate a system under heavy load. 

 The load averages are often used to gauge the system's 

performance and to determine whether additional resources are 

needed. 

 The uptime command is a quick and convenient way to check 

how long a system has been running. 

Overall, uptime provides a snapshot of the system's current status, 

including its uptime and load averages, which can be valuable for system 

administrators and users monitoring the health of a system. 

 

23.  HostName  display or set the system's hostname 

The hostname command in Linux and Unix-like operating systems is 

used to display or set the system's hostname. The hostname is the label 

assigned to a device on a network and is used to identify it in various 

communication processes. Here is the basic syntax of the hostname 

command: 

Display the Hostname: 

hostname 

This command, when executed without any options, displays the current 

hostname of the system. 

 

 

24.   df: Display disk space usage 



56 | A Journey to Linux Terminal 

 

The df command in Linux and Unix-like operating systems is used to 

display information about the disk space usage on mounted filesystems. 

It provides details such as the total disk space, used space, available 

space, and the percentage of usage. Here is the basic syntax of the df 

command: 

  df [options] [filesystem...] 

Display Disk Space Usage: 

df 

This command, when executed without any options, displays information 

about the disk space usage for all mounted filesystems. 

Common Options: 

-h or --human-readable: Display sizes in a human-readable format 

(e.g., KB, MB, GB). 

-t type or --type=type: Limit the display to filesystems of a specific 

type. 

-x type or --exclude-type=type: Exclude filesystems of a specific 

type. 

-T or --print-type: Display the filesystem type as well. 

Examples: 

Display Disk Space Usage in Human-Readable Format: 

  df -h 

This command displays disk space usage in a human-readable format, 

making it easier to interpret sizes. 



57 | A Journey to Linux Terminal 

 

 

Display Disk Space Usage for a Specific Filesystem Type: 

  df -t ext4 

This command limits the display to only those filesystems of the 

specified type (in this case, ext4). 

Exclude Specific Filesystem Type from Display: 

  df -x tmpfs 

This command excludes filesystems of the specified type (in this case, 

tmpfs) from the display. 

Tips: 

 The df command provides information about disk space at the 

filesystem level. For more detailed information about disk usage 

at the directory level, you can use the du (disk usage) command. 

 The -h option is useful for displaying sizes in a more readable 

format, showing sizes in kilobytes (KB), megabytes (MB), or 

gigabytes (GB) instead of blocks. 

 By default, df shows information about all mounted filesystems. 

You can specify specific filesystems as arguments to limit the 

display. 

 df is a handy command for quickly checking disk space usage on 

a system, providing an overview of available and used space on 

mounted filesystems. 

 



58 | A Journey to Linux Terminal 

 

25. Free: system's memory usage 

The free command in Linux and Unix-like operating systems is used to 

display information about the system's memory usage. It provides details 

such as total available memory, used memory, free memory, and swap 

space usage. Here is the basic syntax of the free command: 

free [options] 

Display Memory Usage: 

free 

This command, when executed without any options, displays information 

about the system's memory usage. 

Common Options: 

 -h or --human-readable: Display sizes in a human-readable 

format (e.g., KB, MB, GB). 

 -b or --bytes: Display memory sizes in bytes. 

 -k or --kilo: Display memory sizes in kilobytes. 

 -m or --mega: Display memory sizes in megabytes. 

 -g or --giga: Display memory sizes in gigabytes. 

Example: 

Display Memory Usage in Human-Readable Format: 

free -h 

This command displays information about the system's memory usage in 

a human-readable format, making it easier to interpret sizes. 

 

Tips: 



59 | A Journey to Linux Terminal 

 

 The free command provides information about both physical and 

swap memory. 

 The -h option is useful for displaying sizes in a more readable 

format, showing sizes in kilobytes (KB), megabytes (MB), or 

gigabytes (GB) instead of bytes. 

 The values under the "used" column include the memory used by 

the operating system, applications, and file system caches. 

free is a useful command for checking the overall memory usage on a 

system, providing insights into available, used, and free memory, as well 

as swap space utilization. 

 

 


